Quantitative Measures for Cartogram Generation Techniques
نویسندگان
چکیده
Cartograms are used to visualize geographically distributed data by scaling the regions of a map (e.g., US states) such that their areas are proportional to some data associated with them (e.g., population). Thus the cartogram computation problem can be considered as a map deformation problem where the input is a planar polygonal map M and an assignment of some positive weight for each region. The goal is to create a deformed map M′, where the area of each region realizes the weight assigned to it (no cartographic error) while the overall map remains readable and recognizable (e.g., the topology, relative positions and shapes of the regions remain as close to those before the deformation as possible). Although several such measures of cartogram quality are well-known, different cartogram generation methods optimize different features and there is no standard set of quantitative metrics. In this paper we define such a set of seven quantitative measures, designed to evaluate how faithfully a cartogram represents the desired weights and to estimate the readability of the final representation. We then study several cartogram-generation algorithms and compare them in terms of these quantitative measures.
منابع مشابه
Quantitative Measures for Cartogram Generation Techniques
Cartograms are used to visualize geographically distributed data by scaling the regions of a map (e.g., US states) such that their areas are proportional to some data associated with them (e.g., population). Thus the cartogram computation problem can be considered as a map deformation problem where the input is a planar polygonal map M and an assignment of some positive weight for each region. ...
متن کاملExperimental Evaluation of the Usability of Cartogram for Representation of GlobeLand30 Data
GlobeLand30 is the world’s first global land cover dataset at 30 m resolution for two epochs, i.e., 2000 and 2010. On the official website, the data are represented by qualitative thematic maps which show the distribution of global land cover, and some proportional symbol maps which are quantitative representations of land cover data. However, researchers have also argued that the cartogram, a ...
متن کاملEfficient Cartogram Generation: A Comparison
Cartograms are a well-known technique for showing geography-related statistical information, such as population demographics and epidemiological data. The basic idea is to distort a map by resizing its regions according to a statistical parameter, but in a way that keeps the map recognizable. In this paper, we deal with the problem of making continuous cartograms that strictly retain the topolo...
متن کاملThe State of the Art in Cartograms
Cartograms combine statistical and geographical information in thematic maps, where areas of geographical regions (e.g., countries, states) are scaled in proportion to some statistic (e.g., population, income). Cartograms make it possible to gain insight into patterns and trends in the world around us and have been very popular visualizations for geo-referenced data for over a century. This wor...
متن کاملRobust cartogram visualization of outliers in manifold learning
Most real data sets contain atypical observations, often referred to as outliers. Their presence may have a negative impact in data modeling using machine learning. This is particularly the case in data density estimation approaches. Manifold learning techniques provide low-dimensional data representations, often oriented towards visualization. The visualization provided by density estimation m...
متن کامل